Login / Signup

Contrasting responses of above- and belowground diversity to multiple components of land-use intensity.

Gaëtane Le ProvostJan ThieleCatrin WestphalCaterina PenoneEric AllanMargot NeyretFons van der PlasManfred AyasseRichard D BardgettKlaus BirkhoferSteffen BochMichael BonkowskiFrançois BuscotHeike FeldhaarRachel GaultonKezia GoldmannMartin M GossnerValentin H KlausTill KleinebeckerJochen KraussSwen C RennerPascal ScherreiksJohannes SikorskiDennis BaulechnerNico BlüthgenRalph BolligerCarmen BörschigVerena BuschMelanie ChistéAnna Maria Fiore-DonnoMarkus FischerHartmut ArndtNorbert HölzelKatharina JohnKirsten JungMarkus LangeCarlo MarziniJoerg OvermannEsther PaŝalićDavid J PerovićDaniel PratiDeborah SchäferIngo SchöningMarion SchrumpfIlja SonnemannIngolf Steffan-DewenterMarco TschapkaManfred TürkeJuliane VogtKatja WehnerChristiane N WeinerWolfgang W WeisserKonstans WellsMichael WernerVolkmar WoltersTesfaye WubetSusanne WurstAndrey S ZaitsevPeter Manning
Published in: Nature communications (2021)
Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.
Keyphrases
  • climate change
  • single cell
  • machine learning
  • human health
  • drug induced