Orientation-specific switching of inelastic electron tunneling in an oxygen-pyridine complex adsorbed onto an Ag(110) surface.
Sanghoon JangTaeho ShinHafiz Ghulam AbbasJae Ryang HahnHong Seok KangPublished in: The Journal of chemical physics (2019)
Here, we report the development of a molecular rotary switch (a "stator-rotor" consisting of a single oxygen molecule as a stator and a single pyridine molecule as a rotor) on a silver surface. The pyridine molecule was bonded to the oxygen molecule and was found to rotate to enable "ON" or "OFF" vibrational conductance through the oxygen molecule. Four stable sites around the oxygen molecule were observed, and vibration conductance turned on and off depending on the site at which the pyridine molecule bonded. The spatially resolved mapping of the vibrational change revealed two locations of maximal vibration intensity, separated by ∼3 Å. These positions acted as two conducting channels. The two distinct vibrational energy levels were associated with the switching process. Adsorption-induced electron transfer between the silver layers and the molecules enhanced the local interactions between the molecules. The two vibration modes were excited by resonant tunneling despite substantial interactions between the molecules, which resulted in a decrease in tunneling conductance. An independent pathway exists for the vibrational excitation process by tunneling electrons and intermolecular interactions.