Login / Signup

Whole genome sequence and comparative genome analyses of multi-resistant Staphylococcus warneri GD01 isolated from a diseased pig in China.

Canying LiuXianjie ZhaoHonglin XieXi ZhangKangjian LiChunquan MaQiang Fu
Published in: PloS one (2020)
Staphylococcus warneri is a coagulase-negative staphylococcus that is a normal inhabitant of the skin. It is also considered to be an opportunistic etiological agent causing significant infections in human and animals. Currently, relatively little attention has been paid to the genome biology of S. warneri pathogenicity and antibiotic resistance, which are emerging issues for this etiological agent with considerably clinical significance. In this study, we determined the complete genome sequence of S. warneri strain GD01 recovered from the sampled muscle abscess tissue of a diseased pig in South China. The genome of S. warneri is composed of a circular chromosome of 2,473,911 base pairs as well as eight plasmid sequences. Genome-wide metabolic reconstruction revealed 82 intact functional modules driving the catabolism of respiration and fermentation for energy production, uptake of distinct sugars as well as two-component regulatory systems. The evidence uncovered herein enables better understanding for metabolic potential and physiological traits of this etiological agent. The antibiotic susceptibility test demonstrated that S. warneri GD01 was resistant to penicillin, amoxicillin, ampicillin, cefalexin, vancomycin, and sulfisoxazole. The associations between antibiotic phenotypes and the related genotypes were identified to reveal the molecular basis conferring resistance to this pathogen. A number of genes coding for potential virulence factors were firstly depicted in the genome of S. warneri GD01, including adhesins, exoenzymes, capsule, and iron acquisition proteins. Our study provides a valuable genomic context of the genes/modules devoting to metabolism, antibiotic resistance, and virulence of S. warneri.
Keyphrases