Login / Signup

Mineral-Enhanced Manganese Ferrite with Multiple Enzyme-Mimicking Activities for Visual Detection of Disease Markers.

Hao WangWenxin BaoMuhammad Tariq SarwarLuyuan TianAidong TangHuaming Yang
Published in: Inorganic chemistry (2023)
Local geometric configurations of metal cations in inorganic enzyme mimics determine their catalytic behaviors, while their optimization remains challenging. Herein, kaolinite, a naturally layered clay mineral, achieves the optimization of cationic geometric configuration in manganese ferrite. We demonstrate that the exfoliated kaolinite induces the formation of defective manganese ferrite and makes more iron cations fill into the octahedral sites, significantly enhancing the multiple enzyme-mimicking activities. The steady-state kinetic assay results show that the catalytic constant of composites toward 3,3',5,5'-tetramethylbenzidine (TMB) and H 2 O 2 are more than 7.4- and 5.7-fold higher than manganese ferrite, respectively. Furthermore, density functional theory (DFT) calculations reveal that the outstanding enzyme-mimicking activity of composites is attributed to the optimized iron cation geometry configuration, which has a higher affinity and activation ability toward H 2 O 2 and lowers the energy barrier of key intermediate formation. As a proof of concept, the novel structure with multiple enzyme-mimicking activities amplifies the colorimetric signal, realizing the ultrasensitive visual detection of disease marker acid phosphatase (ACP), with a detection limit of 0.25 mU/mL. Our findings provide a novel strategy for the rational design of enzyme mimics and an in-depth investigation of their enzyme-mimicking properties.
Keyphrases