Tinnitus is a health condition that affects a large population. Clinical diagnosis and treatment have been developed for treating tinnitus for years. However, there are still limitations because researchers have yet to elucidate the mechanisms underlying how tinnitus neural signals develop in brain structures. Abnormal neural interactions among the brain areas are considered to play an important role in tinnitus generation. Researchers have been studying neural activities in the auditory brain structures, including the dorsal cochlear nucleus (DCN), inferior colliculus (IC), and auditory cortex (AC), to seek a better understanding of the information flow among these brain regions, especially in comparison with both health and tinnitus conditions. In this project, neural activities from the DCN, IC, and AC were collected and analyzed before and after the animals were noise-exposed and before and after their auditory cortices were electrically stimulated. These conditions in rats were used to estimate healthy animals, noise-trauma-induced tinnitus, and after auditory cortex electrical stimulation (ACES) treatment. The signal processing algorithms started with the raw measurement data and focused on the local field potentials (LFPs) and spikes in the time domain. The firing rate, shape of spikes, and time differences among channels were analyzed in the time domain, and phase-phase correlation was used to test the phase-frequency information. All the analysis results were summarized in plots and color-heat maps and also used to identify if any neural signal differs and cross-channel relation changes at various animal conditions and discussed.
Keyphrases
- hearing loss
- resting state
- functional connectivity
- white matter
- working memory
- public health
- healthcare
- health information
- mental health
- air pollution
- spinal cord injury
- high glucose
- spinal cord
- oxidative stress
- risk assessment
- multiple sclerosis
- electronic health record
- endothelial cells
- big data
- brain injury
- health promotion