Login / Signup

Humidity-Induced Degradation Processes of Halide Perovskites Unveiled by Correlative Analytical Electron Microscopy.

Salim MejaouriStefania CacovichPhilippe BaranekBaptiste BérenguierIwan ZimmermannArmelle YaicheDominique LoisnardJean RoussetStéphane Collin
Published in: Small methods (2023)
Improving the stability of lead halide perovskite solar cells (PSCs) for industrialization is currently a major challenge. It is shown that moisture induces changes in global PSC performance, altering the nature of the absorber through phase transition or segregation. Understanding how the material evolves in a wet environment is crucial for optimizing device performance and stability. Here, the chemical and structural evolution of state-of-the-art hybrid perovskite thin-film Cs 0.05 (MA 0.15 FA 0.85 ) 0.95 Pb(I 0.84 Br 0.16 ) 3 (CsMAFA) is investigated after aging under controlled humidity with analytical characterization techniques. The analysis is performed at different scales through Photoluminescence, X-ray Diffraction Spectroscopy, Cathodoluminescence, Selected Area Electron Diffraction, and Energy Dispersive X-ray Spectroscopy. From the analysis of the degradation products from the perovskite layer and by the correlation of their optical and chemical properties at a microscopic level, different phases such as lead-iodide (PbI 2 ), inorganic mixed halide CsPb(I 0.9 Br 0.1 ) 3 and lead-rich CsPb 2 (I 0.74 Br 0.26 ) 5 perovskite are evidenced. These phases demonstrate a high degree of crystallinity that induces unique geometrical shapes and drastically affects the optoelectronic properties of the thin film. By identifying the precise nature of these specific species, the multi-scale approach provides insights into the degradation mechanisms of hybrid perovskite materials, which can be used to improve PSC stability.
Keyphrases