Towards a standardization of non-symbolic numerical experiments: GeNEsIS, a flexible and user-friendly tool to generate controlled stimuli.
Mirko ZanonDavide PotrichMaria BortotGiorgio VallortigaraPublished in: Behavior research methods (2021)
Several studies have suggested that vertebrate and invertebrate species may possess a number sense, i.e. an ability to process in a non-symbolic and non-verbal way the numerousness of a set of items. However, this hypothesis has been challenged by the presence of other non-numerical continuous physical variables, which vary along with numerosity (i.e., any change in the number of visual physical elements in a set naturally involves a related change in visual features such as area, density, contour length and convex hull of the stimulus). It is therefore necessary to control and manipulate the continuous physical information when investigating the ability of humans and other animals to perceive numerousness. During decades of research, different methods have been implemented in order to address this issue, which has implications for experiment replicability and inter-species comparisons, since no general standardized procedure is currently being used. Here we present the 'Generation of Numerical Elements Images Software' (GeNEsIS) for the creation of non-symbolic numerical arrays in a standardized and user-friendly environment. The main aim of this tool is to provide researchers in the field of numerical cognition a manageable and precise instrument to produce visual numerical arrays controlled for all the continuous variables. Additionally, we implemented the ability to actively guide stimuli presentation during habituation/dishabituation and dual-choice comparison tasks used in human and comparative research.