In vivo evaluation of bone microstructure with high-resolution peripheral quantitative tomography (HRpQCT) has been used for a decade in research settings. In this review, we examine the value this technique could have in clinical practice. Bone microstructure parameters obtained with HRpQCT are associated with prevalent fracture in men and women. In postmenopausal women, some parameters also predict incident fracture, independently of areal bone mineral density. In specific population groups including patients with diabetes, chronic kidney disease, glucocorticosteroid therapy and rheumatic diseases, abnormal microstructure parameters from HRpQCT have been reported. Findings from HRpQCT studies may also explain ethnic differences in bone fragility. Treatment monitoring has been challenging in the various clinical trials with available HRpQCT data. The improvements were of small magnitude but tended to be proportional to the potency of antiresorptive agents. Microfinite element analysis was a better predictor of treatment efficacy than the microarchitectural parameters. In conclusion, HRpQCT remains a valuable research tool, but more work is needed to be able to use it in clinical practice.
Keyphrases
- bone mineral density
- postmenopausal women
- white matter
- clinical practice
- body composition
- high resolution
- chronic kidney disease
- clinical trial
- cardiovascular disease
- mass spectrometry
- type diabetes
- stem cells
- end stage renal disease
- soft tissue
- bone regeneration
- open label
- deep learning
- data analysis
- replacement therapy
- placebo controlled