Login / Signup

Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting.

Lan HuiDianzeng JiaHuidi YuYurui XueYuliang Li
Published in: ACS applied materials & interfaces (2018)
We employed a two-step strategy for preparing ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets on nickel foam (FeCH@GDY/NF) as the efficient catalysts toward the electrical splitting water. The introduction of naturally porous GDY nanolayers on FeCH surface endows the pristine catalyst with structural advantages for boosting catalytic performances. Benefited from the protection of robust GDY nanolayers with intimate contact between GDY and FeCH, the combined material exhibits high long-term durability of 10 000 cycles for oxygen-evolution reaction (OER) and 9000 cycles for hydrogen evolution reaction (HER) in 1.0 M KOH. Such excellent bifunctional OER/HER performance makes FeCH@GDY/NF quite qualified for alkaline two-electrode electrolyzer. Remarkably, such electrocatalyst can drive 10 and 100 mA cm-2 at 1.49 and 1.53 V, respectively. These results demonstrate the decisive role of GDY in the improvement of electrocatalytic performances, and open up new opportunities for designing cost-effective, efficient, and stable electrocatalysts for sustainable oxygen/hydrogen generation.
Keyphrases