Molecular Dynamics Simulations of HPr Proteins from a Thermophilic and a Mesophilic Organism: A Comparative Thermal Study.
Ana K Gómez-FloresEdgar López-PérezSalomón J Alas-GuardadoPublished in: International journal of molecular sciences (2023)
The histidine-containing phosphocarrier (HPr) is a monomeric protein conserved in Gram-positive bacteria, which may be of mesophilic or thermophilic nature. In particular, the HPr protein from the thermophilic organism B. stearothermophilus is a good model system for thermostability studies, since experimental data, such as crystal structure and thermal stability curves, are available. However, its unfolding mechanism at higher temperatures is yet unclear at a molecular level. Therefore, in this work, we researched the thermal stability of this protein using molecular dynamics simulations, subjecting it to five different temperatures during a time span of 1 μs. The analyses of the structural parameters and molecular interactions were compared with those of the mesophilic homologue HPr protein from B. subtilis . Each simulation was run in triplicate using identical conditions for both proteins. The results showed that the two proteins lose stability as the temperature increases, but the mesophilic structure is more affected. We found that the salt bridge network formed by the triad of Glu3-Lys62-Glu36 residues and the salt bridge made up of Asp79-Lys83 ion pair are key factors to keep stable the thermophilic protein, maintaining the hydrophobic core protected and the structure packed. In addition, these molecular interactions neutralize the negative surface charge, acting as "natural molecular staples".