Login / Signup

Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine.

Álvaro Muñoz-LópezAnne JungBenjamin BuchmullerJan WolffgrammSara MaurerAnna WitteDaniel Summerer
Published in: Chembiochem : a European journal of chemical biology (2020)
Transcription-activator-like effectors (TALEs) are repeat-based, programmable DNA-binding proteins that can be engineered to recognize sequences of canonical and epigenetically modified nucleobases. Fluorescent TALEs can be used for the imaging-based analysis of cellular 5-methylcytosine (5 mC) in repetitive DNA sequences. This is based on recording fluorescence ratios from cell co-stains with two TALEs: an analytical TALE targeting the cytosine (C) position of interest through a C-selective repeat that is blocked by 5 mC, and a control TALE targeting the position with a universal repeat that binds both C and 5 mC. To enhance this approach, we report herein the development of novel 5 mC-selective repeats and their integration into TALEs that can replace universal TALEs in imaging-based 5 mC analysis, resulting in a methylation-dependent response of both TALEs. We screened a library of size-reduced repeats and identified several 5 mC binders. Compared to the 5 mC-binding repeat of natural TALEs and to the universal repeat, two repeats containing aromatic residues showed enhancement of 5 mC binding and selectivity in cellular transcription activation and electromobility shift assays, respectively. In co-stains of cellular SATIII DNA with a corresponding C-selective TALE, this selectivity results in a positive methylation response of the new TALE, offering perspectives for studying 5 mC functions in chromatin regulation by in situ imaging with increased dynamic range.
Keyphrases