Determining Collision Cross Sections from Differential Ion Mobility Spectrometry.
Christian IeritanoArthur LeeJeff CrouseZack BowmanNour MashmoushiPaige M CrossleyBenjamin P FriebeJ Larry CampbellW Scott HopkinsPublished in: Analytical chemistry (2021)
The experimental determination of ion-neutral collision cross sections (CCSs) is generally confined to ion mobility spectrometry (IMS) technologies that operate under the so-called low-field limit or those that enable empirical calibration strategies (e.g., traveling wave IMS; TWIMS). Correlation of ion trajectories to CCS in other non-linear IMS techniques that employ dynamic electric fields, such as differential mobility spectrometry (DMS), has remained a challenge since its inception. Here, we describe how an ion's CCS can be measured from DMS experiments using a machine learning (ML)-based calibration. The differential mobility of 409 molecular cations (m/z: 86-683 Da and CCS 110-236 Å2) was measured in a N2 environment to train the ML framework. Several open-source ML routines were tested and trained using DMS-MS data in the form of the parent ion's m/z and the compensation voltage required for elution at specific separation voltages between 1500 and 4000 V. The best performing ML model, random forest regression, predicted CCSs with a mean absolute percent error of 2.6 ± 0.4% for analytes excluded from the training set (i.e., out-of-the-bag external validation). This accuracy approaches the inherent statistical error of ∼2.2% for the MobCal-MPI CCS calculations employed for training purposes and the <2% threshold for matching literature CCSs with those obtained on a TWIMS platform.
Keyphrases
- machine learning
- high resolution
- solid phase extraction
- gas chromatography
- mass spectrometry
- systematic review
- depressive symptoms
- multiple sclerosis
- ms ms
- liquid chromatography
- artificial intelligence
- electronic health record
- deep learning
- ionic liquid
- molecular dynamics simulations
- molecularly imprinted
- tandem mass spectrometry
- low cost