Backbone and side-chain resonance assignments of centromeric protein Scm3 from Saccharomyces cerevisiae.
Anusri BhattacharyaVaibhav Kumar ShuklaRamakrishna V HosurAshutosh KumarPublished in: Biomolecular NMR assignments (2019)
The centromeric chromatin plays an essential role in regulating the attachment of microtubules and controlling the segregation of sister chromatids during mitosis. In budding yeast, the evolutionary conserved histone variant, Cse4 is a vital component of the multiprotein kinetochore complex and is recruited to the centromere through its chaperone, Suppressor of chromosome mis-segregation (Scm3). Scm3 is an inner kinetochore protein crucial for the formation of a functional inner kinetochore. Scm3 has been known to play an active role in the assembly of the centromeric nucleosome and its deletion has been found to have deleterious effects on the cells leading to chromosome segregation defects. However, structural details of monomeric full length Scm3 have remained elusive so far. Here, we report the backbone and side-chain resonance assignments of centromeric protein, Scm3. 1H, 13C and 15N chemical shifts of Scm3 have been obtained by various 2D and 3D heteronuclear NMR experiments at pH 7.4 and 283 K.