Investigating the Thermal Stability of Organic Thin-Film Transistors and Phototransistors Based on [1]-Benzothieno-[3,2-b]-[1]-benzothiophene Dimeric Derivatives.
Yu HeShenghui GuoYaowu HeImran MurtazaAiyuan LiXianzhe ZengYitong GuoYang ZhaoXiaolong ChenHong MengPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
Two new highly thermally stable [1]benzothieno[3,2-b][1]benzothiophene (BTBT) dimeric derivatives, namely 1,4-bis([1]benzothieno[3,2-b][1]benzothiophene-2-yl)benzene (BTBT-Ph-BTBT) and 4,4'-bis([1]benzothieno[3,2-b][1]benzothiophene-2-yl)-1,1'-biphenyl (BTBT-DPh-BTBT), were synthesized by combining two simple fragment structures. Compared to the monomer compound 2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT, μmax =3.4×10-2 cm2 V-1 s-1 ), the organic thin-film transistors (OTFTs) based on BTBT-Ph-BTBT and BTBT-DPh-BTBT showed significantly higher mobility (up to 2.5 and 3.6 cm2 V-1 s-1 for BTBT-Ph-BTBT and BTBT-DPh-BTBT, respectively). The mobility of OTFTs based on BTBT-Ph-BTBT was kept at a high value (2.4×10-1 cm2 V-1 s-1 ) after the devices were thermally annealed at 350 °C. Furthermore, the organic phototransistors (OPTs) based on BTBT-Ph-BTBT and BTBT-DPh-BTBT displayed high photosensitivities in a range of 250-400 nm with a low intensity, making these materials potentially applicable for sensitive optoelectronic devices.