Fabricating Amorphous Zero-Valent Iron for Cr(VI) Efficient Reduction: Unveiling the Effect of Ethylenediamine on Physicochemical Properties.
Zishen LinFobang LiuChunli ZhengAibin ZhuXiaowei MaYuanzhe PengChi HePublished in: Langmuir : the ACS journal of surfaces and colloids (2023)
Amorphous zero-valent iron (AZVI) has attracted wide attention due to its high-efficiency reduction ability. However, the effect of different EDA/Fe(II) molar ratios on the physicochemical properties of the synthesized AZVI requires further investigation. Herein, series of AZVI samples were prepared by changing the molar ratio of EDA/Fe(II) to 1/1 (AZVI@1), 2/1 (AZVI@2), 3/1 (AZVI@3), and 4/1 (AZVI@4). When the EDA/Fe(II) ratio increased from 0/1 to 3/1, the Fe 0 proportion on the AZVI surface increased from 26.0 to 35.2% and the reducing ability was enhanced. As for AZVI@4, the surface was severely oxidized to form a large amount of Fe 3 O 4 , and the Fe 0 content was only 74.0%. Moreover, the removal ability of Cr(VI) was in the order AZVI@3 > AZVI@2 > AZVI@1 > AZVI@4. The isothermal titration calorimetry results revealed that the increase of the molar ratio of EDA/Fe(II) would lead to the stronger complexation of EDA with Fe(II), which resulted in the gradual decrease of the yield of AZVI@1 to AZVI@4 and the gradual deterioration of water pollution after the synthesis. Therefore, based on the evaluation of all indicators, AZVI@2 was the optimal material, not only because its yield was as high as 88.7% and the secondary water pollution level was low, but most importantly, the removal efficiency of Cr(VI) by AZVI@2 was excellent. Furthermore, the actual Cr(VI) wastewater with the concentration of 14.80 mg/L was treated with AZVI@2, and the removal rate of 97.0% was achieved after only a 30 min reaction. This work clarified the effect of different ratios of EDA/Fe(II) on the physicochemical properties of AZVI, which provided insights for guiding the reasonable synthesis of AZVI and is also conducive to investigating the reaction mechanism of AZVI in Cr(VI) remediation.