Login / Signup

Fitness Cost of Chlorpyrifos Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on Different Host Plants.

Cínthia G GarletRafaella P MoreiraPatricia da S GubianiRamon B PalhariniJuliano R FariasOderlei Bernardi
Published in: Environmental entomology (2021)
Spodoptera frugiperda (J. E. Smith, 1797) is a polyphagous pest of global relevance due to the damage it inflicts on agricultural crops. In South American countries, this species is one of the principal pests of maize and cotton. Currently, S. frugiperda is also emerging as an important pest of soybeans and winter cereals in Brazil. Chemical control is one of the main control tactics against S. frugiperda, even though resistance against numerous modes of action insecticides has been reported. To support insect resistance management programs, we evaluated the fitness costs of resistance of S. frugiperda to the acetylcholinesterase inhibitor chlorpyrifos. Fitness costs were quantified by comparing biological parameters of chlorpyrifos-resistant and -susceptible S. frugiperda and their F1 hybrids (heterozygotes) on non-Bt cotton, non-Bt maize, non-Bt soybean, and oats. The results revealed that the chlorpyrifos-resistant genotype showed lower pupa-to-adult and egg-to-adult survivorship and reduced larval weights on oats; longer neonate-to-pupa and egg-to-adult developmental periods, and lower pupal weights and fecundity on maize; lower pupal weights on soybean; and reduced fecundity on cotton compared with the chlorpyrifos-susceptible genotype. Fitness costs also affected fertility life table parameters of the resistant genotype, increasing the mean length of a generation on cotton and maize and reducing the potential for population growth on all hosts. These findings suggest fitness costs at the individual and population levels of chlorpyrifos resistance in S. frugiperda, indicating that removal of the selective agent from the environment would result in reduced resistance and opportunities for the restoration of susceptibility.
Keyphrases
  • physical activity
  • body composition
  • childhood cancer
  • climate change
  • aedes aegypti