Login / Signup

Numerical simulations of paper-based electrophoretic separations with open-source tools.

Gabriel S GerleroSantiago Márquez DamiánFederico SchaumburgNicolás FranckPablo A Kler
Published in: Electrophoresis (2021)
A new tool for the solution of electromigrative separations in paper-based microfluidics devices is presented. The implementation is based on a recently published complete mathematical model for describing these types of separations, and was developed on top of the open-source toolbox electroMicroTransport, based on OpenFOAM® , inheriting all its features as native 3D problem handling, support for parallel computation, and a GNU GPL license. The presented tool includes full support for paper-based electromigrative separations (including EOF and the novel mechanical and electrical dispersion effects), compatibility with a well-recognized electrolyte database, and a novel algorithm for computing and controlling the electric current in arbitrary geometries. Additionally, the installation on any operating system is available due to its novel installation option in the form of a Docker image. A validation example with data from literature is included, and two extra application examples are provided, including a 2D free-flow IEF problem, which demonstrates the capabilities of the toolbox for dealing with computational and physicochemical modeling challenges simultaneously. This tool will enable efficient and reliable numerical prototypes of paper-based electrophoretic devices to accompany the contemporary fast growth in paper-based microfluidics.
Keyphrases