Login / Signup

Inversion symmetry broken in 2H phase vanadium-doped molybdenum disulfide.

Hanjun JiangLu ZhengJing WangManzhang XuXuetao GanXuewen WangWei Huang
Published in: Nanoscale (2021)
Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have received much attention in nonlinear optical applications due to their unique crystal structures and second harmonic generation (SHG) efficiency. However, SHG signals in TMDs show a layer-dependent behavior, consistent with the presence (absence) of inversion symmetry in even-layer (odd-layer) of TMDs. Herein, we synthesized monolayer and bilayer 2H and 3R phase vanadium (V)-doped MoS2 crystal. Raman spectroscopy, XPS, and STEM were used to identify the chemical composition and crystalline structure of as-grown nanoflakes. SHG measurement was used to research the symmetry of V-doped MoS2 crystals with different stacking orders. Significantly, the SHG efficiency in bilayer 2H phase V-doped MoS2 is equivalent to the 3R phase, indicating an inversion symmetry broken lattice structure caused by the in situ V substitute for Mo sites. This study will be conducive to promote the development of promising nonlinear optical devices based on 2D material.
Keyphrases