Login / Signup

Photocontrolled RAFT Polymerization Mediated by a Supramolecular Catalyst.

Liangliang ShenQunzan LuAnqi ZhuXiaoqing LvZesheng An
Published in: ACS macro letters (2017)
A photocontrolled reversible addition-fragmentation chain transfer (RAFT) polymerization mediated by a supramolecular photoredox catalyst is reported. Cucurbit[7]uril (CB[7]) was used to form a host-guest complex with Zn(II) meso-tetra(4-naphthalylmethylpyridyl) porphyrin (ZnTPOR) to prevent aggregation of ZnTPOR, which in combination with a chain transfer agent (CTA) initiated efficient and controlled RAFT polymerization in water under visible light. RAFT polymerization was significantly affected by the subtle interplay of host-guest, electrostatic, and steric interactions among CB[7], ZnTPOR, and CTA. Polymerization rate was remarkably improved using CB[7]@ZnTPOR in comparison with that using ZnTPOR. The use of supramolecular interactions to modulate photocontrolled RAFT polymerization provides new opportunities to manipulate controlled radical polymerizations.
Keyphrases