Login / Signup

Anisotropic Strain Tuning of L10 Ternary Nanoparticles for Oxygen Reduction.

Junrui LiShubham SharmaKecheng WeiZitao ChenDavid MorrisHonghong LinCheng ZengMiaofang ChiZhouyang YinMichelle MuzzioMengqi ShenPeng ZhangAndrew A PetersonShouheng Sun
Published in: Journal of the American Chemical Society (2020)
Tuning the performance of nanoparticle (NP) catalysts by controlling the NP surface strain has evolved as an important strategy to optimize NP catalysis in many energy conversion reactions. Here, we present our new study on using an eigenforce model to predict and experiments to verify the strain-induced catalysis enhancement of the oxygen reduction reaction (ORR) in the presence of L10-CoMPt NPs (M = Mn, Fe, Ni, Cu, Ni). The eigenforce model allowed us to predict anisotropic (that is, two-dimensional) strain levels on distorted Pt(111) surfaces. Experimentally, by preparing a series of 5 nm L10-CoMPt NPs, we could push the ORR catalytic activity of these NPs toward the optimum region of the theoretical two-dimensional volcano plot predicted for L10-CoMPt. The best ORR catalyst in the alloy NP series we studied is L10-CoNiPt, which has a mass activity of 3.1 A/mgPt and a specific activity of 9.3 mA/cm2 at room temperature with only 15.9% loss of mass activity after 30 000 cycles at 60 °C in 0.1 M HClO4.
Keyphrases
  • room temperature
  • metal organic framework
  • ionic liquid
  • visible light
  • escherichia coli
  • photodynamic therapy
  • reduced graphene oxide
  • cystic fibrosis
  • endothelial cells
  • high glucose
  • finite element
  • iron oxide