Desmosome architecture derived from molecular dynamics simulations and cryo-electron tomography.
Mateusz SikoraUtz H ErmelAnna SeyboldMichael KunzGiulia CalloniJulian ReitzR Martin VabulasGerhard HummerAchilleas S FrangakisPublished in: Proceedings of the National Academy of Sciences of the United States of America (2020)
Desmosomes are cell-cell junctions that link tissue cells experiencing intense mechanical stress. Although the structure of the desmosomal cadherins is known, the desmosome architecture-which is essential for mediating numerous functions-remains elusive. Here, we recorded cryo-electron tomograms (cryo-ET) in which individual cadherins can be discerned; they appear variable in shape, spacing, and tilt with respect to the membrane. The resulting sub-tomogram average reaches a resolution of ∼26 Å, limited by the inherent flexibility of desmosomes. To address this challenge typical of dynamic biological assemblies, we combine sub-tomogram averaging with atomistic molecular dynamics (MD) simulations. We generate models of possible cadherin arrangements and perform an in silico screening according to biophysical and structural properties extracted from MD simulation trajectories. We find a truss-like arrangement of cadherins that resembles the characteristic footprint seen in the electron micrograph. The resulting model of the desmosomal architecture explains their unique biophysical properties and strength.
Keyphrases
- molecular dynamics
- electron microscopy
- molecular dynamics simulations
- density functional theory
- high resolution
- molecular docking
- single cell
- cell therapy
- induced apoptosis
- single molecule
- depressive symptoms
- solar cells
- electron transfer
- bone marrow
- oxidative stress
- mesenchymal stem cells
- mass spectrometry
- endoplasmic reticulum stress
- virtual reality