Login / Signup

Photonic crystal gas sensors based on metal-organic frameworks and polymers.

Jianan WeiZhihao YiLiu YangLing ZhangJunchao YangMolin QinShuya Cao
Published in: Analytical methods : advancing methods and applications (2024)
A photonic crystal (PC) is an optical microstructure with an adjustable dielectric constant. The PC sensor was deemed a powerful tool for gas molecule detection due to its excellent sensitivity, stability, online use and tailorable optical performance. The detection signals are generated by monitoring the changes of the photonic band gap when the sensing behavior occurs. Recently, many efforts have been devoted to improving the PC sensor's detection performance and reducing technical costs by selecting and refining functional materials. In this case, metal-organic frameworks (MOFs) with a large specific surface, tunable structural properties and polymers with unique swelling properties have attracted increasingly attention. In this review, a systematic review of PC gas sensors based on MOFs and polymers was carried out for the first time. Firstly, the optical properties and gas sensing mechanism of PCs were briefly summarized. Secondly, a detailed discussion of the structural properties and rapid preparation methods of distributed Bragg reflectors (DBRs), opals and inverse opals (IOPCs) was presented. Thirdly, the recent advances in MOF, polymer and MOF/polymer-based PC sensors over the past few years were summarized. It should be noted that the sensitivity and selectivity enhancement strategy by appropriate material species selection, organic ligand functionalization, metal-ion doping, diverse functional material arrays, and multi-component compounding were analyzed in detail. Finally, prospects on PC gas sensors are given in terms of preparation methods, material functionalization and future applications.
Keyphrases