Login / Signup

A squarate-pillared titanium oxide quantum sieve towards practical hydrogen isotope separation.

Qingqing YanJing WangLinda ZhangJiaqi LiuMohammad WahiduzzamanNana YanLiang YuRomain DupuisHao WangGuillaume MaurinMichael HirscherPeng GuoSujing WangJiang-Feng Du
Published in: Nature communications (2023)
Separating deuterium from hydrogen isotope mixtures is of vital importance to develop nuclear energy industry, as well as other isotope-related advanced technologies. As one of the most promising alternatives to conventional techniques for deuterium purification, kinetic quantum sieving using porous materials has shown a great potential to address this challenging objective. From the knowledge gained in this field; it becomes clear that a quantum sieve encompassing a wide range of practical features in addition to its separation performance is highly demanded to approach the industrial level. Here, the rational design of an ultra-microporous squarate pillared titanium oxide hybrid framework has been achieved, of which we report the comprehensive assessment towards practical deuterium separation. The material not only displays a good performance combining high selectivity and volumetric uptake, reversible adsorption-desorption cycles, and facile regeneration in adsorptive sieving of deuterium, but also features a cost-effective green scalable synthesis using chemical feedstock, and a good stability (thermal, chemical, mechanical and radiolytic) under various working conditions. Our findings provide an overall assessment of the material for hydrogen isotope purification and the results represent a step forward towards next generation practical materials for quantum sieving of important gas isotopes.
Keyphrases