Using three-dimensional visualization as an optimal tool to plan and validate an aortopexy in a congenital heart disease patient with severe tracheal stenosis.
Torben KehlVictoria van RüthJulius Matthias WeinrichMichael HüblerPublished in: Interactive cardiovascular and thoracic surgery (2021)
We present a patient with severe tracheal stenosis resulting from a compression by the innominate artery 6 months after an arterial switch operation in a dextro-transposition of the great arteries. Segmentation and three-dimensional (3D) visualization were derived from a contrast-enhanced dual-source computed tomography and post-processing was performed using a dedicated open-source platform (3D Slicer). Post-processing allowed a comprehensible visualization of the relationship of the innominate artery to the trachea when compared to standard computer tomography reformations. Finally, the surgical approach to move the innominate artery anteriorly in order to relieve the tracheal obstruction was emphasized based on the improved 3D visualization of the actual pathology. An effective aortopexy could be performed and the postoperative result was confirmed by a second 3D visualization. About 3 months of follow-up, the patient is completely asymptomatic. Three-dimensional visualization offers excellent opportunities for diagnosis, treatment planning and follow-up in patients with a vascular-related tracheal stenosis in the context of congenital heart disease.