Login / Signup

Rapid and Complete Digestion of Refractory Geological Samples Using Ultrafine Powder for Accurate Analyses of Trace Elements.

Yan-Hong LiuShun GuoWen-Jun LiDing-Shuai XueChao-Feng LiBo Wan
Published in: Analytical chemistry (2024)
Complete sample digestion is a prerequisite for acquiring high-quality analytical results for geological samples. Closed-vessel acid digestion (bomb) has typically been used for the total digestion of refractory geological samples. However, the long digestion time (4-5 days) and insoluble fluoride complexes still pose challenges for digesting refractory geological samples using this approach. In this study, an efficient and simplified digestion technique combining ultrafine powders from planetary ball milling with bomb digestion was developed for trace element analysis of refractory geological samples: peridotite and granitoid. The method shows two significant improvements compared with previous approaches. (1) By performing dry planetary ultrafine milling, the initial 200 mesh peridotite (<74 μm) could be reduced to 800 mesh (<20 μm) in 6 min at a ball-to-powder mass ratio of approximately 15 using 3 mm tungsten carbide milling balls. (2) Complete peridotite and granitoid dissolution were achieved in approximately 2 h, 60 times faster than what is achievable using previous methods (2 h vs 120 h). Moreover, ultrafine powders effectively suppressed insoluble fluoride formation during bomb digestion. A suite of peridotite and granitoid reference materials were measured to evaluate the stability of this method. This efficient, simple, and reliable sample digestion method could benefit geological, food, environmental, and other fields requiring solid sample decomposition via wet acid, fusion, combustion, or dry ashing.
Keyphrases
  • anaerobic digestion
  • particulate matter
  • drinking water
  • air pollution
  • climate change