DeepADRA2A: predicting adrenergic α2a inhibitors using deep learning.
Nitin WankhadeUmmireddy DayasagarAnju SharmaPradnya KambleTanmaykumar VarmaPrabha GargPublished in: Journal of biomolecular structure & dynamics (2023)
Adrenergic α2a (ADRA2A) receptors play a crucial role in modulating various physiological actions, thereby influencing the proper functioning of different systems in the body. ADRA2A regulation is associated with a wide range of effects, including alterations in blood pressure, hypertension, heightened heart rate, etc. Inhibition of these receptors results in the release of noradrenaline, leading to heightened physiological activity, improved alertness, reduced blood pressure, and alleviation of hypertension. Conventional approaches for identifying ADRA2A inhibitors are burdened with high costs, labor-intensive procedures, and time-consuming processes. In light of these challenges, leveraging the power of artificial intelligence offers a promising solution for drug discovery and development. This study endeavors to harness the potential of artificial intelligence to develop robust models capable of accurately predicting ADRA2A inhibitors and non-inhibitors. By doing so, we aim to streamline and expedite the identification of potential drug candidates in this domain. In this study, we employed four different machine learning (ML) and deep learning (DL) algorithms to develop prediction models based on various molecular descriptors (1D, 2D, and molecular fingerprints). Among these models, the DL-based prediction model demonstrated superior performance, achieving accuracies of 98.25% and 97.23% on the training and test datasets, respectively. These results underscore the efficacy of DL-based model, as a highly effective tool for predicting ADRA2A inhibitors. The model is made available at https://github.com/PGlab-NIPER/DeepADRA2A.git.Communicated by Ramaswamy H. Sarma.