Eco-Friendly Method for Wood Aerogel Preparation with Efficient Catalytic Reduction of 4-Nitrophenol.
Qianqian YuXiaohan SunFeng LiuZhaolin YangShulei WeiChengyu WangXin LiZechen HeXiao-Dong LiYudong LiPublished in: Gels (Basel, Switzerland) (2023)
The advancement of science and technology and the growth of industry have led to an escalating discharge of domestic sewage and industrial wastewater containing dyes. This surge in volume not only incurs higher costs but also exacerbates environmental burdens. However, the benefits of green and reusable catalytic reduction materials within dye processes are still uncertain. Herein, this study utilized the eco-friendly deep eutectic solvent method (DESM) and the chlorite-alkali method (CAM) to prepare a cellulose-composed wood aerogel derived from natural wood for 4-nitrophenol (4-NP) reduction. The life cycle assessment of wood aerogel preparative process showed that the wood aerogel prepared by the one-step DESM method had fewer environmental impacts. The CAM method was used innovatively to make uniform the chemical functional groups of different wood species and various wood maturities. Subsequently, palladium nanoparticles (Pd NPs) were anchored in the skeleton structure of the wood aerogel with the native chemical groups used as a reducing agent to replace external reducing agents, which reduced secondary pollution and prevented the agglomeration of nanoparticles. Results showed that the catalytic reduction efficiency of 4-NP can reach 99.8%, which shows promises for applications in wastewater treatment containing dyes. Moreover, investigation of the advantages of preparation methods of wood aerogel has important implications for helping researchers and producers choose suitable preparation strategies according to demand.