Login / Signup

Solutions to agricultural green water scarcity under climate change.

Liyin HeLorenzo Rosa
Published in: PNAS nexus (2023)
Rain-fed agricultural systems, which solely depend on green water (i.e. soil moisture from rainfall), sustain ∼60% of global food production and are particularly vulnerable to vagaries in temperature and precipitation patterns, which are intensifying due to climate change. Here, using projections of crop water demand and green water availability under warming scenarios, we assess global agricultural green water scarcity-defined when the rainfall regime is unable to meet crop water requirements. With present-day climate conditions, food production for 890 million people is lost because of green water scarcity. Under 1.5°C and 3°C warming-the global warming projected from the current climate targets and business as usual policies-green water scarcity will affect global crop production for 1.23 and 1.45 billion people, respectively. If adaptation strategies were to be adopted to retain more green water in the soil and reduce evaporation, we find that food production loss from green water scarcity would decrease to 780 million people. Our results show that appropriate green water management strategies have the potential to adapt agriculture to green water scarcity and promote global food security.
Keyphrases
  • climate change
  • human health
  • public health
  • heavy metals
  • risk assessment