Cascaded metasurfaces for high-purity vortex generation.
Feng MeiGeyang QuXinbo ShaJing HanMoxin YuHao LiQinmiao ChenZiheng JiJincheng NiCheng-Wei QiuQinghai SongYuri S KivsharShumin XiaoPublished in: Nature communications (2023)
We introduce a new paradigm for generating high-purity vortex beams with metasurfaces. By applying optical neural networks to a system of cascaded phase-only metasurfaces, we demonstrate the efficient generation of high-quality Laguerre-Gaussian (LG) vortex modes. Our approach is based on two metasurfaces where one metasurface redistributes the intensity profile of light in accord with Rayleigh-Sommerfeld diffraction rules, and then the second metasurface matches the required phases for the vortex beams. Consequently, we generate high-purity LG p,l optical modes with record-high Laguerre polynomial orders p = 10 and l = 200, and with the purity in p, l and relative conversion efficiency as 96.71%, 85.47%, and 70.48%, respectively. Our engineered cascaded metasurfaces suppress greatly the backward reflection with a ratio exceeding -17 dB. Such higher-order optical vortices with multiple orthogonal states can revolutionize next-generation optical information processing.