Login / Signup

Screen-Printed, Pure Carbon-Black Thermocouple Fabrication and Seebeck Coefficients.

Christina OffenzellerMarcel KnollBernhard JakobyWolfgang Hilber
Published in: Sensors (Basel, Switzerland) (2019)
Thermocouples classically consist of two metals or semiconductor components that are joined at one end, where temperature is measured. Carbon black is a low-cost semiconductor with a Seebeck coefficient that depends on the structure of the carbon particles. Different carbon black screen-printing inks generally exhibit different Seebeck coefficients, and two can therefore be combined to realize a thermocouple. In this work, we used a set of four different commercially available carbon-black screen-printing inks to print all-carbon-black thermocouples. The outputs of these thermocouples were characterized and their Seebeck coefficients determined. We found that the outputs of pure carbon-black thermocouples are reasonably stable, linear, and quantitatively comparable to those of commercially available R- or S-type thermocouples. It is thus possible to fabricate thermocouples by an easily scalable, cost-efficient process that combines two low-cost materials.
Keyphrases
  • low cost
  • high throughput
  • magnetic resonance imaging
  • computed tomography
  • risk assessment
  • room temperature
  • health risk
  • heavy metals
  • drinking water
  • tissue engineering
  • human health