MicroRNA-23a-3p Down-Regulation in Active Pulmonary Tuberculosis Patients with High Bacterial Burden Inhibits Mononuclear Cell Function and Phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 Signaling via Targeting IRF1/SP1.
Meng-Chih LinChiu Ping LeeChang-Chun HsiaoPo-Yuan HsuTing-Ya WangChao-Chien WuTung-Ying ChaoSum-Yee LeungYu-Ping ChangMeng-Chih LinPublished in: International journal of molecular sciences (2020)
The aim of this study is to explore the role of microRNAs (miR)-21/23a/146a/150/155 targeting the toll-like receptor pathway in active tuberculosis (TB) disease and latent TB infection (LTBI). Gene expression levels of the five miRs and predicted target genes were assessed in peripheral blood mononuclear cells from 46 patients with active pulmonary TB, 15 subjects with LTBI, and 17 non-infected healthy subjects (NIHS). THP-1 cell lines were transfected with miR-23a-3p mimics under stimuli with Mycobacterium TB-specific antigens. Both miR-155-5p and miR-150-5p gene expressions were decreased in the active TB group versus the NIHS group. Both miR-23a-3p and miR-146a-5p gene expressions were decreased in active TB patients with high bacterial burden versus those with low bacterial burden or control group (LTBI + NIHS). TLR2, TLR4, and interleukin (IL)10 gene expressions were all increased in active TB versus NIHS group. MiR-23a-3p mimic transfection reversed ESAT6-induced reduction of reactive oxygen species generation, and augmented ESAT6-induced late apoptosis and phagocytosis, in association with down-regulations of the predicted target genes, including tumor necrosis factor (TNF)-α, TLR4, TLR2, IL6, IL10, Notch1, IL6R, BCL2, TGF-β1, SP1, and IRF1. In conclusion, the down-regulation of miR-23a-3p in active TB patients with high bacterial burden inhibited mononuclear cell function and phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 signaling via targeting IRF1/SP1.
Keyphrases
- toll like receptor
- mycobacterium tuberculosis
- inflammatory response
- pulmonary tuberculosis
- immune response
- nuclear factor
- genome wide
- gene expression
- rheumatoid arthritis
- cell proliferation
- dendritic cells
- cancer therapy
- reactive oxygen species
- risk factors
- dna methylation
- copy number
- high glucose
- diabetic rats
- epithelial mesenchymal transition
- peripheral blood
- signaling pathway
- hiv aids
- hiv infected