Login / Signup

Embryonic development of parakeratinized epithelium of the tongue in the domestic duck (Anas platyrhynchos f. domestica): LM, SEM, and TEM observations.

Kinga Skieresz-SzewczykHanna JackowiakMarlena Ratajczak
Published in: Protoplasma (2018)
The parakeratinized epithelium is a common and widespread type of keratinized epithelium in the oral cavity in adult birds. In contrast to orthokeratinized epithelium, which mostly covers mechanical papillae and the lingual nail, parakeratinized epithelium covers almost the entire dorsal surface of the tongue in birds. The characteristic feature of parakeratinized epithelium is the presence of nuclei in the keratinized layer. The present study aimed to investigate for the first time the micro- and ultrastructural changes of parakeratinized epithelium during embryonic development and to assess the readiness of the epithelium to serve protective functions during food transport to the esophagus. Three developmental stages were distinguished: embryonic, transformation, and pre-hatching stages. The embryonic stage lasts from the 9th to the 14th day of incubation and the epithelium is composed of undifferentiated epithelial cells. The transformation stage lasts from the 15th to the 22nd day of incubation and the epithelium undergoes transformation into stratified epithelium consisting of basal, intermediate, and superficial layers. The characteristic feature of this stage is formation of the periderm with osmophilic granules. The pre-hatching stage starts on the 23rd day, and the epithelium with a fully developed keratinized layer resembles that of the epithelium in adult animals. No periderm was observed on the epithelial surface. It was confirmed that at the time of hatching the parakeratinized epithelium is fully differentiated and ready to fulfill its function during food transport. The presence of periderm is a common feature characteristic for para- and orthokeratinized epithelium in the oral cavity of birds. However, the formation of the keratinized/cornified layer is different for these two types of keratinized epithelia.
Keyphrases
  • machine learning
  • computed tomography
  • deep learning
  • climate change
  • childhood cancer