Login / Signup

Highly Porous Hybrid Metal-Organic Nanoparticles Loaded with Gemcitabine Monophosphate: a Multimodal Approach to Improve Chemo- and Radiotherapy.

Xue LiErika PorcelMario Menendez-MirandaJingwen QiuXiaomin YangChristian SerreAlexandra PastorDidier DesmaëleSandrine LacombeRuxandra Gref
Published in: ChemMedChem (2019)
Nanomedicine recently emerged as a novel strategy to improve the performance of radiotherapy. Herein we report the first application of radioenhancers made of nanoscale metal-organic frameworks (nanoMOFs), loaded with gemcitabine monophosphate (Gem-MP), a radiosensitizing anticancer drug. Iron trimesate nanoMOFs possess a regular porous structure with oxocentered Fe trimers separated by around 5 Å (trimesate linkers). This porosity is favorable to diffuse the electrons emitted from nanoMOFs due to activation by γ radiation, leading to water radiolysis and generation of hydroxyl radicals which create nanoscale damages in cancer cells. Moreover, nanoMOFs act as "Trojan horses", carrying their Gem-MP cargo inside cancer cells to interfere with DNA repair. By displaying different mechanisms of action, both nanoMOFs and incorporated Gem-MP contribute to improve radiation efficacy. The radiation enhancement factor of Gem-MP loaded nanoMOFs reaches 1.8, one of the highest values ever reported. These results pave the way toward the design of engineered nanoparticles in which each component plays a role in cancer treatment by radiotherapy.
Keyphrases