How the Number of Layers and Relative Position Modulate the Interlayer Electron Transfer in π-Stacked 2D Materials.
Alessandro BiancardiClaudiu CaraianiWai-Lun ChanMarco CaricatoPublished in: The journal of physical chemistry letters (2017)
Understanding the interfacial electron transfer (IET) between 2D layers is central to technological applications. We present a first-principles study of the IET between a zinc phthalocyanine film and few-layer graphene by using our recent method for the calculation of electronic coupling in periodic systems. The ultimate goal is the development of a predictive in silico approach for designing new 2D materials. We find IET to be critically dependent on the number of layers and their stacking orientation. In agreement with experiment, IET to single-layer graphene is shown to be faster than that to double-layer graphene due to interference effects between layers. We predict that additional graphene layers increase the number of IET pathways, eventually leading to a faster rate. These results shed new light on the subtle interplay between structure and IET, which may lead to more effective "bottom up" design strategies for these materials.