Login / Signup

Acute effects of kinesiology tape tension on soleus muscle h-reflex modulations during lying and standing postures.

Yung-Sheng ChenWei-Chin TsengChe-Hsiu ChenPedro BezerraXin Ye
Published in: PloS one (2020)
Kinesiology tape (KT) has been widely used in the areas of sports and rehabilitation. However, there is no gold standard for the tape tension used during a KT application. The purpose of this study was to examine the effects of KT application with different tension intensities on soleus muscle Hoffmann-reflex (H-reflex) modulation during lying and standing postures. Fifteen healthy university students were tested with 3 tape tension intensities during separate visits with a randomized sequence: tape-on no tension (0KT), moderate (about 50% of the maximal tape tension: (ModKT), and maximal tape tension (MaxKT). During each experimental visit, the H-reflex measurements on the soleus muscle were taken before, during, and after the KT application for both lying and standing postures. The H-wave and M-wave recruitment curves were generated using surface electromyography (EMG). There was a main effect for posture (p = 0.001) for the maximal peak-to-peak amplitude of the H-wave and M-wave (Hmax/Mmax) ratio, showing the depressed Hmax/Mmax ratio during standing, when compared to the lying posture. Even though the tension factor had a large effect (ηp2 = 0.165), different tape tensions showed no significant differential effects for the Hmax/Mmax ratio. The spinal motoneuron excitability was not altered, even during the maximal tension KT application on the soleus muscle. Thus, the tension used during a KT application should not be a concern in terms of modulating the sensorimotor activity ascribed to elastic taping during lying and standing postures.
Keyphrases
  • skeletal muscle
  • heart rate
  • liver failure
  • signaling pathway
  • spinal cord
  • respiratory failure
  • transcranial direct current stimulation
  • mechanical ventilation
  • drug induced