Login / Signup

2-Methylimidazole-modulated 2D Cu metal-organic framework for 5-hydroxymethylfurfural hydrodeoxygenation.

Zhuo-Fei LiYan-Ting LiQiang ZhangTong-Liang Hu
Published in: Dalton transactions (Cambridge, England : 2003) (2024)
Preparation of the high value-added chemical 2,5-dimethylfuran (2,5-DMF) from the biomass-derived platform molecule 5-hydroxymethylfurfural (HMF) is of great significance in the preparation of biofuels. Here, a bottom-up strategy was used to prepare a metal-organic framework (MOF) material with a two-dimensional nanosheet morphology, named CPM, in which an additive 2-methylimidazole was introduced into the hydrothermal process of Cu 2+ ions and terephthalic acid. Subsequently, CPM-700 prepared by heat treatment under an inert atmosphere showed excellent catalytic performance in the reaction of HMF hydrodeoxygenation to 2,5-DMF. The materials before and after pyrogenation were characterized by PXRD, XPS, TEM, N 2 adsorption and desorption and so on. It was confirmed that compared with the catalyst derived from the cubic MOF material self-assembled by Cu 2+ and terephthalic acid, the morphology of 2D nanosheets was beneficial for the reaction of HMF to 2,5-DMF. Combined with the experimental data, the possible reaction path of 2,5-DMF preparation from HMF is that 2,5-dihydroxymethylfuran was formed by hydrogenation of the aldehyde group on the furan ring, and then 2,5-DMF was obtained by hydrogenolysis. This paper provides an effective route for 2D MOF-derived catalytic materials in the selective hydrogenation of HMF.
Keyphrases