Login / Signup

Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays.

Guanhua LongWanlin JinFan XiaYuru WangTianshun BaiXingxing ChenXuelei LiangLian-Mao PengYoufan Hu
Published in: Nature communications (2022)
High-speed flexible circuits are required in flexible systems to realize real-time information analysis or to construct wireless communication modules for emerging applications. Here, we present scaled carbon nanotube-based thin film transistors (CNT-TFTs) with channel lengths down to 450 nm on 2-μm-thick parylene substrates, achieving state-of-the-art performances of high on-state current (187.6 μA μm -1 ) and large transconductance (123.3 μS μm -1 ). Scaling behavior analyses reveal that the enhanced performance introduced by scaling is attributed to channel resistance reduction while the contact resistance (180 ± 50 kΩ per tube) remains unchanged, which is comparable to that achieved in devices on rigid substrates, indicating great potential in ultimate scaled flexible CNT-TFTs with high performance comparable to their counterparts on rigid substrates where contact resistance dominates the performance. Five-stage flexible ring oscillators are built to benchmark the speed of scaled devices, demonstrating a 281 ps stage delay at a low supply voltage of 2.6 V.
Keyphrases