Do prolonged fasting periods influence the postprandial metabolic responses in turtles? What can Trachemys scripta elegans teach us about this?
Aymam Cobo de FigueiredoJose Eduardo de CarvalhoPublished in: Journal of experimental zoology. Part A, Ecological and integrative physiology (2020)
The postprandial period is characterized by a modification of the gastrointestinal activity after food intake, accompanied by an increase in metabolic rate, secretion of acids, and absorption of nutrients. For ectothermic vertebrates, those changes are particularly prominent given the relatively low metabolic cost and the low frequency of food uptake. However, prolonged fasting periods decrease energy reserves and may compromise the upregulation of costly processes, such as the increase in metabolic rate after resuming the meal intake. Assuming that the main source of energy needed to support such events is provided from the animal's own body reserves, our aim with this study is to test the hypothesis that the longer the period of fasting, the smaller the metabolic rate increase during the postprandial period, since lesser energy reserves trigger these increases. For this, we measured the oxygen consumption rates (V̇O2 ) of red-eared slider turtles, Trachemys scripta elegans, submitted to different periods of fasting (47 and 102 days), before and after the ingestion of meals equivalent to 5% of their body masses. Despite the longer fasting period, which led to a reduction of 10.77% in the body mass of the turtles, there were no differences between the two experimental groups regarding maximum V̇O2 values after food intake (V̇O2 peak), postprandial metabolic scope, mean time to V̇O2 peak, and postprandial duration. Results indicate that 102 fasting days does not compromise aerobic metabolic increase during postprandial period and does not impair digestive process of the turtles, even with a loss of body mass.