An Adhesive Peptide from the C-Terminal Domain of α-Synuclein for Single-Layer Adsorption of Nanoparticles onto Substrates.
Ghibom BhakAlejandro Méndez-ArdoyAlbert EscobedoXavier SalvatellaJavier MontenegroPublished in: Bioconjugate chemistry (2020)
The two-dimensional (2D) homogeneous assembly of nanoparticle monolayer arrays onto a broad range of substrates constitutes an important challenge for chemistry, nanotechnology, and material science. α-Synuclein (αS) is an intrinsically disordered protein associated with neuronal protein complexes and has a high degree of structural plasticity and chaperone activity. The C-terminal domain of αS has been linked to the noncovalent interactions of this protein with biological targets and the activity of αS in presynaptic connections. Herein, we have systematically studied peptide fragments of the chaperone-active C-terminal sequence of αS and identified a 17-residue peptide that preserves the versatile binding nature of αS. Attachment of this short peptide to gold nanoparticles afforded colloidally stable nanoparticle suspensions that allowed the homogeneous 2D adhesion of the conjugates onto a wide variety of surfaces, including the formation of crystalline nanoparticle superlattices. The peptide sequence and the strategy reported here describe a new adhesive molecule for the controlled monolayer adhesion of metal nanoparticles and sets a stepping-stone toward the potential application of the adhesive properties of αS.