Login / Signup

Steel Sheets Laser Lap Joint Welding-Process Analysis.

Hubert DanielewskiAndrzej Skrzypczyk
Published in: Materials (Basel, Switzerland) (2020)
This article presents the results of steel-sheet lap-joint-welding using laser beam radiation. The use of a laser beam and keyhole effect for deep material penetration in lap joint welding was presented. Thermodynamic mechanism of laser welding is related to material properties and process parameters. Estimation of welding parameters and joint properties' analysis was performed through numerical simulation. The article presents a possibility of modeling laser lap-joint welding by using Simufact Welding software based on Marc solver and thermo-mechanical solution. Numerical calculation was performed for surface and conical volumetric heat sources simulating laser absorption and keyhole effect during steel sheet welding. Thermo-mechanical results of fusion zone (FZ), heat-affected zone (HAZ) and phase transformations calculated in numerical simulation were analyzed. The welding parameters for partial sealed joint penetration dedicated for gas piping installations were estimated from the numerical analysis. Low-carbon constructional steel was used for numerical and experimental analyses. A trial joint based on the estimated parameters was prepared by using a CO2 laser. Numerical and experimental results in the form of hardness distributions and weld geometry were compared. Metallographic analysis of the obtained weld was presented, including crystallographic structures and inclusions in the cross section of the joint.
Keyphrases
  • high speed
  • clinical trial
  • drinking water
  • phase iii
  • radiation induced
  • ionic liquid