Login / Signup

Peripheral nesfatin-1 reduces basal brain activity but has limited effect on epilepsy-like conditions.

Omer Faruk KalkanOsman AktasZafer ŞahinSelcen Aydin AbidinAbdulhamit YildirimAli Faruk Özyaşarİbrahim Uzunİsmail Abidin
Published in: General physiology and biophysics (2024)
In this study, we investigated the effects of peripheral nesfatin-1 on basal brain activity and 4-aminopyridine (4-AP)-induced epileptiform activity, and its relationship with the electrocorticogram (ECoG) power spectrum and EEG bands. Forty-nine male Wistar rats were divided into seven groups: control sham, 4-AP (2.5 mg/kg i.p.), Nesfatin-1 (1, 2, and 4 μg/kg i.p.), Nesfatin-1 (2 μg/kg) post-treatment, and Nesfatin-1 (2 μg/kg) pre-treatment. Recordings were conducted for 70 min under ketamine/xylazine (90/10 mg/kg) anesthesia. In the post-treatment group, nesfatin-1 was injected 20 min after 4-AP induction. In the pre-treatment groups, nesfatin-1 was administered following basal recordings and before 4-AP injection. 4-AP induced epileptiform activity in all animals, peaking at 30 min. Nesfatin-1 (2 μg/kg) reduced basal brain activity (p < 0.05) and decreased alpha, delta, and theta bands in ECoG. Post-treatment of nesfatin-1 did not affect 4-AP-induced activity (p > 0.05) but increased gamma band activity (p > 0.05). Pre-treatment of nesfatin-1 reduced epileptiform activity between 50 and 60 min (p < 0.05), decreased delta bands, and increased gamma bands (p > 0.05). We conclude that peripheral nesfatin-1 modulates normal brain activity but has limited effects on abnormal discharges.
Keyphrases
  • transcription factor
  • clinical trial
  • combination therapy
  • high resolution
  • working memory
  • diabetic rats
  • single molecule