A Print-and-Fuse Strategy for Sacrificial Filaments Enables Biomimetically Structured Perfusable Microvascular Networks with Functional Endothelium Inside 3D Hydrogels.
Matthias RymaHatice GençAli NadernezhadIlona PaulusDominik SchneidereitOliver FriedrichKristina AndelovicStefan LyerChristoph AlexiouIwona CichaJuergen GrollPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
A facile and flexible approach for the integration of biomimetically branched microvasculature within bulk hydrogels is presented. For this, sacrificial scaffolds of thermoresponsive poly(2-cyclopropyl-2-oxazoline) (PcycloPrOx) are created using melt electrowriting (MEW) in an optimized and predictable way and subsequently placed into a customized bioreactor system, which is then filled with a hydrogel precursor solution. The aqueous environment above the lower critical solution temperature (LCST) of PcycloPrOx at 25 °C swells the polymer without dissolving it, resulting in fusion of filaments that are deposited onto each other (print-and-fuse approach). Accordingly, an adequate printing pathway design results in generating physiological-like branchings and channel volumes that approximate Murray's law in the geometrical ratio between parent and daughter vessels. After gel formation, a temperature decrease below the LCST produces interconnected microchannels with distinct inlet and outlet regions. Initial placement of the sacrificial scaffolds in the bioreactors in a pre-defined manner directly yields perfusable structures via leakage-free fluid connections in a reproducible one-step procedure. Using this approach, rapid formation of a tight and biologically functional endothelial layer, as assessed not only through fluorescent dye diffusion, but also by tumor necrosis factor alpha (TNF-α) stimulation, is obtained within three days.
Keyphrases
- tissue engineering
- hyaluronic acid
- drug delivery
- wound healing
- rheumatoid arthritis
- wastewater treatment
- quantum dots
- solid state
- nitric oxide
- endothelial cells
- blood brain barrier
- drug release
- highly efficient
- high resolution
- extracellular matrix
- minimally invasive
- gold nanoparticles
- living cells
- visible light
- mass spectrometry