Login / Signup

Dynamics of ovarian maturation during the annual reproductive cycle of the endangered fish Steindachneridion parahybae (Siluriformes: Pimelodidae) in captivity.

Renato Massaaki HonjiBruno Cavalheiro AraújoDanilo CaneppeleFabiana Laura Lo NostroRenata Guimarães Moreira
Published in: Journal of fish biology (2022)
To characterize the female reproductive biology of the endangered species Steindachneridion parahybae in captivity, the authors used the concentration of gonadal steroids and the oocyte development during the annual reproductive cycle (RC) and after artificial induced spawning (AIS) until 48 h. Three stages of gonadal maturation were identified, based on morphological and physiological features: early maturation or previtellogenic (PRV) oocyte, advanced maturation or vitellogenic (VTG) oocyte and regression (REG) or follicular atresia. They identified and characterized the following stages of germ cells: oogonia, perinucleolar and cortical alveoli, and VTG and atretic oocytes during RC. The oestradiol levels were higher in PRV than those in VTG and REG during the RC, whereas androgens showed higher levels of oestradiol in VTG than those in PRV and REG. The progestogen levels remained unchanged during the whole RC. The final oocyte maturation (FOM) was achieved after AIS and postovulatory follicles (POF) were identified. Plasma concentration of progestogens (17α,20β-dihydroxy-pregnen-3-one and 17α-hydroxyprogesterone) increased considerably after AIS, remaining high up to 6 h after AIS, and progressively decreased over time after AIS. During RC, the lack of FOM and POFs reveals that captivity negatively impacts S. parahybae reproduction. Nonetheless, the VTG stage of oocytes, reached during RC, is suitable for ovulation induction with artificial hormone manipulation, enabling the reproduction of this species in captivity and being essential for the success of fish farming and/or fish conservation programmes (conservationist aquaculture).
Keyphrases
  • induced apoptosis
  • type diabetes
  • high glucose
  • cell cycle arrest
  • oxidative stress
  • endothelial cells
  • diabetic rats
  • preterm birth