Single-Cell Mobility Analysis of Metastatic Breast Cancer Cells.
Jialang ZhuangYongjian WuLiang ChenSiping LiangMinhao WuLedu ZhouChun-Hai FanYuanqing ZhangPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2018)
Efforts have been taken to enhance the study of single-cells, however, the task remains challenging because most previous investigations cannot exclude the interactions between single cells or separately retrieved cells with specificity for further analyses. Here, a single-cell mobility analysis platform (SCM-Chip) is developed that can not only real-time monitor single-cell migration in independent niches but can also selectively recover target cells one by one. The design of each channel with a single-cell capture unit and an outlet enables the system to place single cells in different isolated niches with fluidic capture and to respectively collect target cells based on mobilities. SCM-Chip characterization of breast cancer cells reveals the presence of high- and low-migratory populations. Whole-cell transcriptome analysis establishes that monocyte chemotactic protein induced protein 1 (MCPIP1) is related with cell mobility; cells with a high expression of MCPIP1 exhibit low mobility in vitro and metastasis in vivo. The SCM platform provides a generic tool for accurate single-cell isolation and differentiation that can be readily adapted for the study of cancer and drug development.