A Highly Stretchable and Permeable Liquid Metal Micromesh Conductor by Physical Deposition for Epidermal Electronics.
Yanyan LiShaolei WangJiaxue ZhangXiaohui MaShitai CaoYuping SunShuxuan FengTing FangDesheng KongPublished in: ACS applied materials & interfaces (2022)
Stretchable electronics allow functional devices to integrate with human skin seamlessly in an emerging wearable platform termed epidermal electronics. Compliant conductors represent key building components for functional devices. Among the various candidates, gallium-based liquid metals stand out with metallic conductivity and inherent deformability. Currently, the widespread applications of liquid metals in epidermal electronics are hindered by the low steam permeability and hence unpleasant wearing perceptions. In this study, a facile physical deposition approach is established to create a liquid metal micromesh over an elastomer sponge, which exhibits low sheet resistance (∼0.5 Ω sq -1 ), high stretchability (400% strain), and excellent durability. The porous micromesh shows textile-level permeability to achieve long-term wearing comfort. The conformal interaction of the liquid metal micromesh with the skin gives rise to a low contact impedance. An integrated epidermal sensing sleeve is demonstrated as a human-machine interface to distinguish different hand gestures by recording muscle contractions. The reported stretchable and permeable liquid metal conductor shows promising potentials in next-generation epidermal electronics.