Login / Signup

Surface-Induced Engineering: P-Induced Formation of Surface Bonding States Based on the ZIF Synthesis Strategy for Photocatalytic Hydrogen Evolution.

Teng LiYouji LiZhi-Liang Jin
Published in: Inorganic chemistry (2022)
The development of clean energy is one of the effective strategies to solve carbon peak and carbon neutrality. The severe recombination of photogenerated carriers is one of the fundamental reasons that hinder the development of photocatalysis. In this work, NiCo-MOF/ZIF was obtained by the "ZIF on MOF" strategy for the first time, and a stable bonding state of surface P(δ - )-Co/Ni(δ + )-O(δ - ) was formed on the surface of the catalyst by a one-step oxidation-phosphorus doping strategy. The X-ray photoelectron spectroscopy technique proves that phosphorus doping forms a unique bonding state on the surface of CoO-NiO. The novel surface bonding state can effectively inhibit the recombination of photogenerated carriers and can increase the migration rate of photogenerated electrons, which accelerates the process of photocatalytic hydrogen evolution. Photocatalytic hydrogen evolution kinetics verifies that the formation of P(δ - )-Co/Ni(δ + )-O(δ - ) bonding states can accelerate the process of photocatalytic hydrogen evolution, and the durability of the catalyst is verified by cycling experiments. This work provides a new strategy for catalyst synthesis, new horizons, and effective strategies for the surface design of catalysts and the development of photocatalytic hydrogen evolution.
Keyphrases