First Cytogenetic Analysis of Hemidactylus mercatorius Gray, 1842 Provides Insights on Interspecific Chromosomal Diversification in the Genus Hemidactylus (Squamata: Gekkonidae).
Marcello MezzasalmaPublished in: Life (Basel, Switzerland) (2024)
This contribution provides the first karyotype description of Hemidactylus mercatorius and discusses the interspecific chromosome diversification in the genus. Chromosomal analysis was performed on samples from different Malagasy populations using standard karyotyping, Ag-NOR staining, and banding methods (sequential C-banding + Giemsa, + Chromomycin A 3 , +4',6-diamidino-2-phenylindole). Irrespective of sex or sampling locality, H. mercatorius shows a karyotype of 2n = 42 with metacentric (1, 18-21), submetacentric (4), subtelocentric (5, 11), and acrocentric pairs (all the remaining pairs). There was no heteromorphic chromosome pair and no clear distinction between macro- and microchromosomes. NORs were localised close to the centromeres of a medium acrocentric pair (14). Heterochromatic blocks were identified on the telomeric and centromeric regions of most chromosome pairs. A comparison with the karyotype of H. mabouia highlights that the different morphology of several chromosome pairs clearly distinguishes the two species, contrasting the previously proposed synonymy. The differences between the karyotypes of H. mercatorius and H. mabouia concern the number of biarmed and acrocentric elements, suggesting the occurrence of several chromosome inversions. Considering all the available karyotype data on Hemidactylus and its sister genus Cyrtodactylus , it is possible to advance an evolutionary hypothesis on their chromosomal evolution, starting from a common ancestor with 2n = 48 and all acrocentric elements. From this ancestral condition, the karyotype diversification in the two genera has been prevalently characterised by a progressive accumulation of fusions and inversions which have reduced the total chromosome count and increased the number of biarmed chromosomes.