Photocatalytic Template Removal by Non-Ozone-Generating UV Irradiation for the Fabrication of Well-Defined Mesoporous Inorganic Coatings.
Barry ReidAlaric TaylorAlberto Alvarez-FernandezMuhamad Hafiz IsmaelShatakshi SharmaBenjamin Schmidt-HansbergStefan GuldinPublished in: ACS applied materials & interfaces (2019)
The processing of mesoporous inorganic coatings typically requires a high-temperature calcination step to remove organic precursors that are essential during the material assembly. Lowering the fabrication energy costs and cutting back on the necessary resources would provide a greater scope for the deployment in applications such as architectural glass, optical components, photovoltaic cells, and energy storage, as well as further compatibilize substrates with low temperature stability. Organic removal methods based on UV-ozone treatment are increasing in popularity, but concerns remain regarding large-scale ozone generation and usage of mercury-containing UV lamps. To this end, we present a method that relies on non-ozone-generating UV radiation at 254 nm (UV254) and incorporation of small amounts of photocatalytic material in the formulation, here demonstrated with TiO2 nanocrystals. At concentrations as low as 5 wt % relative to the main inorganic aluminosilicate material, the TiO2 nanocrystals catalyze a "cold combustion" of the organic components under UV254 irradiation to reveal a porous inorganic network. Using block copolymer-based co-assembly in conjunction with photocatalytic template removal, we produce well-defined mesoporous inorganic thin films with controlled porosity and refractive index values, where the required processing time is governed by the amount of TiO2 loading. This approach provides an inexpensive, flexible, and environmentally friendly alternative to traditional organic removal techniques, such as UV-ozone degradation and thermal calcination.
Keyphrases
- water soluble
- particulate matter
- visible light
- highly efficient
- hydrogen peroxide
- aqueous solution
- perovskite solar cells
- quantum dots
- room temperature
- reduced graphene oxide
- induced apoptosis
- drug delivery
- low cost
- gold nanoparticles
- photodynamic therapy
- metal organic framework
- cell death
- dna methylation
- air pollution
- gene expression
- oxidative stress
- energy transfer
- signaling pathway
- ionic liquid
- cell cycle arrest
- sewage sludge