Login / Signup

Pore formation driven by particle impact in laser powder-blown directed energy deposition.

Samantha WebsterNewell MoserKamel FezzaaTao SunKornel EhmannEdward GarbocziJian Cao
Published in: PNAS nexus (2023)
Process defects currently limit the use of metal additive manufacturing (AM) components in industries due to shorter fatigue life, potential for catastrophic failure, and lower strength. Conditions under which these defects form, and their mechanisms, are starting to be analyzed to improve reliability and structural integrity of these highly customized parts. We use in situ, high-speed X-ray imaging in conjunction with a high throughput laser, powder-blown directed energy deposition setup to observe powder particle impact behavior within the melt pool. Through fundamental observations of the stochastic, violent powder delivery in powder-blown DED, we uncover a unique pore formation mechanism. We find that a pore can form due to air-cushioning, where vapor from the carrier gas or environment is entrapped between the solid powder particle surface and liquid melt pool surface. A critical time constant is established for the mechanism, and X-ray computed tomography is used to further analyze and categorize the new type of "air-cushioning" pores. It is shown that the air-cushioning mechanism can occur under multiple laser processing conditions, and we show that air-cushioning pores are more likely to be formed when powder particles are larger than 70 μ m. By quantifying the effect of powder particle impact, we identify new avenues for development of high-quality laser, powder-blown DED products. Furthermore, we deepen knowledge on defect formation in metal additive manufacturing, which is being increasingly utilized in high performance situations such as aerospace, automotive, and biomedical industries.
Keyphrases
  • high speed
  • computed tomography
  • high resolution
  • high throughput
  • healthcare
  • magnetic resonance imaging
  • positron emission tomography
  • magnetic resonance
  • depressive symptoms
  • mass spectrometry