Login / Signup

Immobilization of recombinant serine protease from Virgobacillus natechei FarD T on amino graphene-chitosan biocompatible nanohybrid for enhancing pH and thermal stability.

Mahboobeh AfrandIman SourinejadAhmad HomaeiRoohullah Hemmati
Published in: International journal of biological macromolecules (2024)
The serine protease gene was heterologously expressed in Escherichia coli BL21 (DE3) using the PET 28a vector. The purified enzyme was immobilized on a nanohybrid of amino graphene and chitosan. The characterization of synthesized nanohybrids and immobilized enzymes was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM). Immobilization increased the temperature optimum from 60 to 70 °C for both free and immobilized enzymes, while the optimal pH of the enzymes did not change post-immobilization (pH 8). The immobilized biocatalyst significantly enhanced thermal stability, as well as enzyme stability at significant pH ranges. After 30 days of storage, the immobilized enzymes exhibited approximately 83 % of their relative activity, while the free protease retained only 56 % of its initial activity. Stabilization also altered the kinetic parameters (increasing K m , decreasing Kcat/K m , and V max ) and thermodynamic parameters (increasing enzyme half-life and activation energy). The study's outcomes represent a significant advancement in the realm of enzyme synthesis and its stabilization using several combined technologies, including enzyme production with recombinant DNA technology based on gene synthesis, and its stabilization using a hybrid substrate synthesized from nanomaterials. Based on these findings, the immobilized recombinant enzyme has high potential for industrial use as an efficient and stable biocatalyst.
Keyphrases